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1. Introduction and Terminology

Let us start with the definition of a k-extendable graph G. Suppose k is an integer
such that 1 < k < ([V(G)| — 2)/2. A graph G is k-extendable if G is connected, has a
perfect matching (a 1-factor) and any matching in G consisting of k edges can be extended
to (i.e., is a subset of) a perfect matching.

The extendability number of G, extG, is the maximum k such that G is k-
extendable. A natural problem is to determine the extendability number of a graph G.
In particular, we would like to know the extendability number of some special graphs, for
example, the n-dimensional cube @, which has 2™ vertices and n2"~! edges. For small
values of n, you can easily verify that Q, is (n — 1)-extendable. On the other hand, a
k-extendable graph is (k + 1)-connected (see [3]) or [4]) and so the n-cube Q, cannot be
n-extendable. Thus, it is plausible to conjecture that the extendability number of @Q,, is
n—1.

The n-cube, Q,, is an example of a graph which is the Cartestan product of two
smaller graphs. In general, the Cartesian product G, x G, of two graphs G; and G
has vertex set V(G;) x V(G2) and vertices (u;,u2) and (v;,v2) of the Cartesian product
graph are adjacent if either u; = vy and u2 is adjacent to v, in G5 or u; = vy and u; is
adjacent to v; in G;. In particular, the n-cube, Q,, can be defined inductively by letting
Qi1 =Kzand foralln > 2,let Q, =Qn-.1 X K,.

Viewed from this point of view, when trying to prove that Q, is (n — 1)-extendable,
the question naturally arises as to how highly extendable the graph G x K is if G is, say,
k-extendable. Or even more generally, how highly extendable is the Cartesian product of
a k-extendable and an é-extendable graph?

2. Main Results
The main result of this paper is the following theorem.

Theorem 1. If G; and G2 are k-extendable and f-extendable graphs, respectively,
then their Cartesian product G; X G is (k + £ + 1)-extendable.

An important special case of Theorem 1 is
Theorem 2. If G is a k-extendable graph then G x K is (k + 1)-extendable.

We have recently learned that J. Liu and Q. Yu [2] have independently proved the
following generalization of Theorem 2, as well as Theorem 4.

Theorem 3. Let G, be a k-extendable graph and G, be a connected graph. Then
the Cartesian product G; X G is (k + 1)-extendable.

Each of these theorems implies that the cube Q,, is (n—1)-extendable and the products
Qrse+2 = Qi4+1 X Qe41 and Qi42 = Q41 X K show that these results are best possible
for some classes of graphs.




Proofs of Theorems 1 and 2 are based on the following technical type theorem.

Theorem 4. Suppose that G is a k-extendable graph, vi,vs, -+, v, Wi, wa, -+, W,
are arbitrary vertices of G,e;, ez, -, ¢; are independent edges of G not incident to the
vertices vy, --,v,,wy, -, w, and suppose that r > 1, r+s+t < k+1. Then G contains a
perfect matching extension of {e;,---,e:} not containing any edge joining the vertex sets

{vi,---v,} and {wy,---,w,}.

After the proof of Theorem 4, we shall first prove Theorem 2 via a single application
of Theorem 4 in a relatively simple case and then we shall prove Theorem 1 by applying
Theorem 4 several times in more complicated situations.

Let us make an important remark about notation before proceding. Throughout the
paper, a matching M is a graph G means not just a set of independent edges in G but a
subgraph of G each component of which has exactly two vertices. In accordance with this,
if M is any matching in G and Vj is a vertex set in V(G), the induced subgraph M¢ (Vo)
— or more briefly M (Vo) — is a forest with components each of which has either one or
two vertices.

Proof of Theorem 4. We will need the following two lemmas. (The proof of the
first may be found in [4].)

Lemm. 1. Every k-extendable graph is (k + 1)-connected. 1

Lemma 2. Let G be a k-extendable graph (k > 1) and let z1y;, z2y2,- -, Zey: (t < k)
be independent edges in G. Then deleting the endvertices of these edges, the resulting
graph G — {z,,yY1,Z2,Y2, -+, Zs, Yt } is (k — t)-extendable.

Proof of Lemma 2. Notice that it is sufficient to prove the statement for t = 1;
the general statement follows by induction on t. By definition, [V(G)| > 2k + 2 and so
V(G) — {z1,y1}| > 2k. By Lemma 1, G is (k + 1)-connected and so G — {z,y,} is
connected.

Graph G is k-extendable and so it is 1-extendable, as well (see [4]), and hence z,y,
can be extended to a perfect matching of G. Hence the graph G — {z;,y,} has a perfect
matching. Finally let e;,e2,---,ex_; be arbitrary independent edges in G — {z1,y1}. The
graph G is k-extendable and so the edge set {e;,e2,---,ex—1,Z1y1} extends to a perfect
matching M in G and M — {z,,y,} is thus a perfect matching in G — {z;,y;} containing
the edge set {e;,- -, ex_1}. ]

Now we are ready to prove Theorem 4. If t = k, then r = 1 and s = 0 and the claim
is obvious.

So let us suppose that t < k. Let G be a k-extendable graph, V = {v,,:--,v,} and
W = {w,,:--,w,} be arbitrary disjoint vertex sets, and e¢; = z,y1,€2 = Tay2, -+, € = T;yy
be independent edges of G not incident with any vertex in VUW wherer > 1, r+ s+t <
k + 1. By Lemmas 2 and 1, respectively, the graph H = G — {z1,y1,**,Z¢,y¢} is (k — t)-
extendable and hence (k — ¢t + 1)-connected.

2




We wish to prove that there is a matching M in the bipartite subgraph H* of H having
vertex bipartition V U (V(H) — (V UW)) which covers all the vertices in V. Suppose not.
Then by P. Hall’s bipartite matching theorem [1], there is a set Vo C V with

ITa-(Vo)| < [Vol.
Then for the set

Wo = (V — Vo) UTg- (Vo) UW,
we have
Wo|<r+s—1<k-—t
and
[V(H) — (VouWo)| 2 [V(H)| - [Vo| — [Wol| 2 2(k—¢t) +2-r—(k—1t) 21,

and so V(H) — (Vo UW)) is non-empty. But then the set W separates the non-empty set Vg
from the non-empty set V(H) — Vo — Wy in H, contradicting the (k —t + 1)-connectedness
of the graph H. |

Proof of Theorem 2. To facilitate the proofs of Theorems 1 and 2, we now introduce
the concept of a shadow.
Throughout this paper, it will be useful to think of graph H = G x K; as two graphs G’

and G” both isomorphic to G with vertex sets {v},---,v.} and {v{,:--,v0}, respectively,
joined by a perfect matching consisting of the edges v{vY,---,v/v/. Let F be a forest in

graph H each component of which consists of one or two vertices. (In the proof of Theorem
2, we will have two-vertex components only, i.e., F will be a matching.)

The shadow S/ (F) of F in G’ is a forest F' in G’ whose components (each of which
has one or two vertices) have their vertex sets defined as in the following table:

Vertex Set of the component of F Vertex set of the shadow of
the component of F in G’

{v} {vi}

{vi'} {vi},if v ¢ V(F)
0,if v} € V(F)

{vf,v;-} {vz,v;}
{vi,vi'} {v}
{v:',v;’} {vf,v;-}if {vi,v]}nV(F) =0,
{vi},if v ¢ V(F) and v} € V(F),
{v;.} Jif v} € V(F) and v} ¢ V(F),
9,if {vf,v;} CV(F)




Clearly the number of components of the shadow Sg/(F) is at most the number of
components of F.

Now, we are ready to prove Theorem 2. Let G be a k-extendable graph and let G’
and G” denote the subgraphs in H = G x K3 isomorphic to G. Let M be a matching of
k + 1 edges in H. We distinguish two cases according to the setting of M in H.

Case 1. E(M) C E(G")U E(G").

If, say, E(M) C E(G’) then taking the shadow Sg«(M) and an arbitrary perfect
matching in H — (V(M)UV (Sg#(M))) (e.g. the edges joining V(G') — V(M) and V(G") -
V(S5c#(M))), we obtain a perfect matching extension of M.

On the other hand, if E(M) ¢ E(G') and E(M)  E(G") then |[E(M) N E(G")| < k
and |[E(M) N E(G")| < k. By the k-extendability of G’ =~ G” ~ G, we can take a perfect
matching extension of E(M) N E(G’) and E(M) N E(G") in G’ and G", respectively, and
their union is a perfect matching extension of M in H.

Case 2. E(M) € E(G') U E(G").

Let v;,v2,---,v, (r > 1) be the isolated vertices of the shadow Sg:(M) which are
the shadows of the edges of M joining V(G’) to V(G") and let w,,---,w, be the other
isolated vertices of Sgr(M). Furthermore, let {z1,y1}, -+ ,{z¢,yt} be the vertex sets of the
two-vertex components of Sgr (M) (r+s+t < k+1). Then G’ contains a perfect matching
extension M’ of the edge set {z,y;,--,Z:y:} with no edge v;w; (1 <1 <r, 1 <5 <)
by Theorem 4. Let e}, ,,---,€;,, (¢ < r) be the edges of M " incident to the vertex
set {vy,---,v,} and let e}, ,,---, e}, be the edges of the G" shadow of the two-vertex
components determined by the edges e}, ,, - -,€},,. If the edge set (E(M) N E(G")) U
{€l41, ", et} has at most k elements then it has a perfect matching extension M" in G"
since G” is k-extendable. And if (E(M) N E(G")) U {e/}y,---,€{'sq} has k + 1 elements,
then E(M) N E(G’) = @, s = 0 and M" = Sgn(M') is a perfect matching extension
of it. In both cases, M' U M” is a perfect matching in H. Now, swap the edge pairs
{el,el'} (i =t +1,---,t + q) into pairs {f;1, fiz} of edges joining V(G’) and V(G") such
that e}, fi1,e, fi2 constitute a 4-cycle. The resulting matching

((M' U M") - {e;-\\»he"-ﬂv' .t ye;+q’e:’+q}) U {fer1,0, frar,207 s fraq, frag,2}

is a perfect matching extension of M in H. |

Proof of Theorem 1. Let V = {v;; : 1 <1 < |V(G,)|, 1 £ 5 = |V(G2)|} be the
vertex set of the Cartesian product G; X G2. The subgraphs of G; x G2 induced by the
vertex sets {v;; : 1 < j < |V(G1)|} and {vi; : 1 < ¢ < |V(G3)|} are called the i-th row
and the j-th column of G| X G2 and will be denoted by R; and 17}, respectively. Note that
Ri=G; (1=1,2,---,|V(Gy)]) and T; = G, ( = 1,2,---,|V(G})|).

Let M be an arbitrary matching in G; x G2. For a vertex set Vo C V(G X G3) the
induced subgraph M|V, N V(M)] will be called the trace of M in V; and will be denoted
by M(V,). The components of M(V;) have one or two vertices and will be called trace
elements of M in V,. (Typically, V, will be the vertex set of one or two rows or columns,
and we will then write M(R;), M(R;, UR;,), eic.)
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From now on, let M be a given matching of k + £ + 1 edges in G; X G3. We will
prove that M is extendable to a perfect matching in G; X G2. (The other conditions are
obviously fulfilled, namely that G; x G is connected and has a perfect matching.)

Lemma 3. At least one of the following two statements is true.

(i) The trace of M in any row has at most k + 1 components and the trace of M in
the union of any two rows has at most k + 2 components.

(ii) The trace of M in any column has at most £+ 1 components and the trace of M
in the union of any two columns has at most £ + 2 components.

Proof of Lemma 3. Suppose that the first half of (i) is false, i.e., suppose M(R;)
has as least k + 2 components for some 1.

Consider any column T;. The (at least k + 1) components of M, whose traces in
R; are completely in R; — {v;;}, are not incident to V(T;) and so M(T;) has at most
(k+ €+ 1) — (k+ 1) = £ components and the first part of statement (ii) holds.

Now consider two arbitrary columns Tj;, and Tj,. The (at least k) components of M
whose traces in R, are completely in R; — {v,;,,v,;,} are not incident to V(T;, UT};,) and
so M(T;, U T;,) has at most £ + 1 components. Thus the second part of statement (ii)
holds as well.

Now, suppose that the second half of (i) is false, i.e., suppose M(R;, U R;,) has at
least k+3 components for some indices 1,¢2. Consider any column T;. The (at least k+1)
components of M whose traces in R;, UR;, are completely in (Ri, UR;,)—{v, ,vi,;} are not
incident to V (T}) and so M(T}) has at most £ components. Thus the first part of statement
(i) is satisfied. Now, consider any two columns T;, and Tj,. The (at least k—1) components
of M whose traces in R;, U R,, are completely in R;, U Ri; — {vi,,,Vi,5;5Vipj,»Visjo } aT€
not incident to V (T, UTj,) and so M(Tj, UTj;,) has at most £+ 2 components. Thus the
second part of statement (ii) holds in this case as well. |

Appealing to the row-column symmetry of Lemma 3, from now on, without loss of
generality, we will assume that statement (i) is true. We will start by trying to swap all
vertical edges of M for pairs of horizontal edges inducing four-cycles so that the resulting
matching in each row R; should be extendable to a perfect matching of R;. Then swapping

back the edges in the four-cycle, we will obtain a perfect matching extension of M in
Gy X Gz.

Remark 1. Notice that if we swap a vertical edge v,, ;,v;,;, into some pair of hor-
izontal edges {v;, ;, Vi, j;,Vi; 5, Vi;j, }» then the number of matching edges in the current
matching will increase by one. However, the number of trace components in any row or in
the union of any two rows will not change except in the union R,, U R,,. However, we will
not return to these two rows again since all the vertical edges joining them are swapped
at the same time.

Keeping only the ordering rule: “start with the pairs of rows whose union contains
k + 2 trace components”, we will try to perform the following inductive General Row Step
for all pairs of rows joined by at least one vertical edge of M. (Clearly, by symmetry, there
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is a corresponding General Column Step for all pairs of columns joined by at least one
horizontal edge of M.)

General Row Step. Let R;, and R;, be two rows of G; X G joined by at least one
vertical edge of M, when M) is the matching obtained from M after some number of previ-
ous applications (perhaps none) of the General Row Step. Suppose that the number of com-
ponents of the shadow Sp, (Mo(R;, UR;,)) is not more than k+1. Let vy, 5,04, 5,5+, V4, j,
be the shadow vertices in R;, of the vertical edges in Mo(Ri, U Ri,), Vs, ky» Vs, kas " " » Vs, k,
be the other shadow components consisting of one vertex and fy, f2,---, f: be the edges in
Sk, (Mo(Ri, UR,)), r+s+t<k+1, r>0. R, is k-extendable, so Theorem 4 implies
that there are some indices j§,7, -, J; such that {j},---,5;7} N {k1,---,k,} = 0 and
the edge set {vi,;,vi,j:,° ", 04,5, Y%,5: } U {f1,--+, ft} is extendable to a perfect matching
of R;,, and then so is {v;,j, vi,5:,°**,¥i,5,Yi,5: } U (E(Mo) N E(R;,)). Furthermore, the
edge set {vi,j, Viyjr,° ", Viyj,Vigjz } U (E(Mo) N E(R;,)) is extendable to a perfect match-
ing in R, even if this is a set of k + 1 edges. (It cannot have more than k + 1 edges
since we assumed that (i) of Lemma 3 holds.) For suppose it has k + 1 edges. Then the
set E(Mo) N E(R;,) has k + 1 — r elements, say, e;,€2,---,€x+1—y. But then fy,---,f;
must be their shadows in R;,, (and so t = k + 1 — r) since Sg, (Mo(R;, U Ry,)) has at
most k + 1 components. Thus, the edge set {v,,;, Vigjrs®® " s Vigs, Vigse U {€1,- -, €ky1-r}
is extendable to a perfect matching in R,, just as their shadows were extendable to a
perfect matching in R;,. Now, swap the vertical edges of Mo(R;, U R;,) into the pairs
{viy5,Virizs Viagi Vigse }a oo 5 {Vi)5, V4, 52, Vigj, Via gz }» leaving all other edges of Mo unchanged
to get a new updated matching M.

What can prevent us from applying the General Row Step as long as we have vertical
matching edges between some pairs of rows? There are two possibilities.

Case 1. There is a row R, containing k + 1 edges of the original matching M which
are not extendable to a perfect matching in R;. (Note that there cannot be more than
k + 1 such edges of R; by our assumption after the proof of Lemma 3. Note also that if we
obtain k + 1 edges in R; by means of a swap, then they are extendable, as we have seen in
the General Row Step just above.)

In this case, we claim that all horszontal edges of M in G can be swapped for vertical
edges so that those in any column can be extended to a perfect matching of this column.
Thus we will then have the original vertical edges of M and a set of swapping 4-cycles each
containing either one or two horizontal edges of M. Moreover, if one of these swapping
4-cycles abcd contains only one horizontal edge of M—say ab—then neither ¢ nor d is an
endpoint of any edge in M.

In other words, if Case 1 occurs, we can finish as follows: swap all horizontal edges
of M to get swapping 4-cycles such that the vertical edges in any column of a swapping
4-cycle, together with the vertical edges of M in that column, extend to a perfect matching
of that column. Taking the union of all these perfect matchings over all columns of G; X G3,
we get a perfect matching of Gy X G2 all the edges of which are vertical. Now swap back
on all swapping 4-cycles to get a perfect matching of G, x G, containing all edges of M
and we are finished.

Let us proceed to justify this claim.




As in the proof of Lemma 3, it is easy to see in this case that for every column Tj,
the trace M(T;) has at most £ + 1 components and does not contain £ + 1 vertical edges
because the total number of vertical edges is at most (k + £+ 1) — (k + 1) = £ and for the
union of any two columns T;, and Tj,, the trace M (T}, UT},) has at most £+ 2 components.

First consider all pairs of columns Tj, and Tj, such that M(T}, UTj;,) contains ezactly
£ + 2 components. Then vertices v;;, and v;;, are necessarily incident with two different
horizontal edges of M. Thus v;; and v,;, are two different isolated vertices of M (T}, UT},).
But then each of the shadows S1, (M(T}, UT},)) and Sty (M(Tj, UT};,)) has at most £+ 1
components.

Therefore, if T;, and T;, were joined by one or more horizontal edges of M, then
we can apply the General Column Step to simultaneously swap each of these horizontal
edges joining the two columns for a pair of vertical edges. Thus we finally arrive at a new
matching in T, U Tj, consisting of vertical edges only.

We can do this type of swapping in all pairs of columns T, and T}, in which the trace
of M has exactly £ + 2 components because in so doing, we do not swap the edges of M
which lie in R; and so the number of components in the shadows St, (M(T;, U T},)) and
Squ (M(ij U qu)) is at most £+ 1.

Secondly, we can swap the remaining horizontal edges of M which join the pairs of
columns in the union of which the trace of M has at most £ + 1 components. So it is at
this stage that all k + 1 horizontal lines of M in row R; get swapped for vertical lines via
swapping 4-cycles. Now every column contains a certain set of at most £+ 1 vertical edges
which extends to a perfect matching in this column. (We have used Theorem 4 repeatedly
here, but applied to columns rather than rows. We repeat for emphasis here that in these
pairs of columns these sets of at most £ + 1 vertical edges which have arisen from swaps
on horizontal edges of M joining the two columns, do not touch any other edges of the
original matching M!)

The column-by-column union of all these perfect matchings yields a perfect matching
P’ for G; x G consisting of all vertical lines and among all these vertical lines are all
the vertical lines of M. But then one can swap back on the swapping 4-cycles associated
with perfect matching P’ to get a perfect matching P for G; x G, which picks up all the
horizontal lines of M and retains all the vertical lines of M. So P is a perfect matching
for G; x G3 containing M and we are done.

Case 2. At the beginning or after some number of swaps (perhaps none), there
are two rows R; and R,, joined by a vertical edge of the present matching M, such
that Mo(R;, U R;,) has k + 2 components and both shadows Sp, (Mo(R;, U R;,)) and
SR, (Mo(R;, U R;,)) consist of k + 2 components, as well, i.e., the hypothesis of Theorem
4 and those of the General Row Step do not apply.

In this case, every component of Mo(R;, U R;,) has some nonempty shadow in both
rows. (This means that if Mo(R;,) and My(R;,) contain some component in the same
column then either they must be endvertices of the same vertical edge or the endvertices
of two horizontal edges that are not shadows of each other.)

We will prove that we can apply the General Column Step repeatedly for M and its
modifications and for any two columns joined by some horizontal edges of the matching
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M.

Let us consider two columns T;, and T}, joined by some horizontal edges of M. If the
number of components of M((R;, U R;,) N (T}, U T;,)) is at most two then the number of
components of M(T;, U T};,) is at most £ + 1 (this can be proved in a manner similar to
Lemma 3) and we can apply the General Column Step for T, UT}, to swap the horizontal
edges joining T;, and Tj,.

So, we may assume that M({R;, UR;,)N(T;, UT},)) has at least 3 components. Then,
say, for T}, , the trace M((R;, U R;,) N Tj,) has two components, i.e., v, ;, and v,,;, which
are endvertices of two distinct edges e; and e; of M.

We now claim: (*) that we may assume that ¢, and e; are in R;, and R,,, respectively.
Suppose this is not the case and one of these edges is vertical, say e; = v, j, vi,j;, . If we had
not swapped the edge ¢, at some previous time, then the shadow Sg, (Mo(R;, UR;,)) could
not have k + 2 components, contradicting the hypotheses of Case 2. Thus, we swapped e;
at some previous time and M(R;, U R;,) had k + 2 components just like M(R;, U R;,) by
the ordering rule.

If M((R:, U Ri,) N (T;, UTy,)) has at most two components then M(T;, U Tj,) has at
most £ + 1 components and we can apply Theorem 4 and the General Column Step just
like above.

But now v; ;, and v;,; constitute a trace component of two vertices (i.e., it is an
edge) and so M((R;, U R;,) N (T;, UT},)) can have three components only if both v;, ;, and
iy, € V(M). Then, M(Tj, UT},) may have £42 components (but not more). However, the
component with vertex set {v;, j,,vi,5 } does not and will not have any shadow in T}, (and
this situation will not change later). So we can apply Theorem 4 and the General Column
Step for T;, U Tj,. (Remember: T}, has at most £ + 1 shadow elements of M(T;, U T},)
because v, ,, vi,;, has no image in Tj,.) This completes the proof of claim (*).

From now on, we may assume that, say, M((R;, U R;,) N T},) has two components
and the edges of M incident to v;,; and v,,;, are horizontal, and if M((R;, U R;,) N T},)
has two components then the edges of M incident to v;,;, and v,,,, are horizontal, as well.
Thus, we can apply Theorem 4 and the General Column Step for each pair of columns
joined by some horizontal edges of M if the trace of M in their union contains £ + 2 and
£+ 3 components, respectively, since in this case at least one or both of the horizontal edges
of M incident to {v;,j,,vs,; } have no shadow in Tj,. Furthermore, in these applications
of the General Column Step, we claim that we did not swap any horizontal edge of M
in Ry U R;,. Suppose it is not the case and we swapped some edge v, vi,;,. Then
M(Tj, UTj,) had at least £ + 2 components and so v,,;,,vi,;, € V(M). However then
M ({vi,;,vi,5,}) has no shadow in R;, which contradicts the original assumption of Case
2.

Thus one by one, we can apply Theorem 4 and the General Column Step for all
pairs of columns joined by some horizontal edges of M if the trace of M in their union
consists of at least £ + 2 components since we did not change any horizontal edges of M
in R;, U R;,. Finally, we can apply Theorem 4 and the General Column Step for the pairs
of columns joined by some horizontal edges of M the union of which intersects at most
£+ 1 components of M. Thus, we can swap all horizontal edges into vertical pairs of edges
and we can extend the resulting matching to a perfect matching of G, X G columnwise.

8




Swapping back the edge couples in the swapping four-cycles, we obtain a perfect matching
extension of M in G; X G2 as desired. [
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